Webpages

Friday, February 24, 2012

USA, Indiana:

Construction of the Largest U.S. Geothermal Heat Pump System Underway (Think Progress)

A groundbreaking geothermal heating and cooling project shows that these super-efficient heat pumps are gaining traction. 
Construction of the Ball State University geothermal
project is underway
(Courtesy - Think Progress) 
by Christopher Williams

Construction of the largest ground-source geothermal heating and cooling system in the United States is now underway and half complete.

The project, located on the Muncie, Indiana campus of Ball State University, will be large enough to heat and cool 47 buildings, replace four coal-fired boilers, and save the campus roughly $2 million a year over the 30-year life of the system.



The project will also help create 2,300 direct and indirect jobs throughout the construction period.

This is great news for a technology that has been available, efficient and economical since the 1940′s. In 1993, the EPA called it “the most efficient, environmentally clean, and cost effective space conditioning system today.” While the technology has been known for decades, the size of the Ball State project proves that geothermal installers and designers are gaining confidence to implement the technology on a massive scale and are winning the trust of risk-averse property owners.

The role of ground source heat pumps in the U.S.

Geothermal, or ground source heat pumps, can play a critical role in changing the U.S. energy mix by reducing the use of petroleum, coal and gas for on-site heating and cooling applications. The technologies we tend to think of when we use the term “renewable energy” — solar PV, wind, and hydro — usually do nothing to address thermal energy, which makes up roughly one third of our nation’s energy use.

For example, space heating represents 45% of energy use in the average single-family home in the U.S. — by far the single biggest use of energy for consumers. But consumers tend to think mostly about renewable electricity technologies, rather than heating and cooling technologies. Geothermal heat pumps can eliminate the need for on-site fossil fuel use for the heating of a property, particularly in the Northeast, where fuel oil is used to heat a large percentage of buildings.

The state of the geothermal heat pump industry



“Geothermal heat pump technology has grown to a point where people are beginning to understand what it is, what it offers in terms of benefits over conventional systems and that it can be successfully implemented at all levels, from the smallest single family residence to the large-scale retrofit at Ball State,” says Ryan Carda a geothermal engineering expert who co-founded Geo-Connections and who co-authored the International Ground Source Heat Pump Association (IGSHPA) manual on geothermal design and installation.

The numbers back up Carda’s comments. Pike Research projects that the industry will double from 2010 to 2017, with the technology also making solid gains in the utility sector.

The U.S. geothermal heat pump industry has seen strong growth when compared to the broader economy. With a 30% federal investment tax credit until 2016, and the ability to install projects outside of the regulatory authority of the utility (unlike most solar PV systems), adoption rates continue to increase.

As Carda points out, educated contractors are also helping grow the market: “I believe that education at all levels is one thing that can help this technology take the next step. Building owners need to understand what geothermal can do for them in terms of energy consumption, operating and maintenance costs, overall comfort levels, etc. It all starts with contractors, architects and engineers as they are the ones who need to relay that message [to property owners].”

The Importance of the Ball State Geothermal Project
The Ball State University project is enormously important for raising awareness about this under-reported technology.

With both Republican and Democratic lawmakers hailing the project, it’s a small glimmer of hope for bipartisanship on energy. It also shows how sophisticated the engineering and construction practices in the geothermal heat pump market have become. And finally, the media attention — from stories in the Environmental Leader, the New York Times, and Indiana National Public Radio — give the industry the attention it deserves.

Chris Williams is an IGSHPA Certified Geothermal Installer and Chief Marketing Officer at HeatSpring Learning Institute. If you’re interested in learning how more about how geothermal heat pumps work, you can download free “Geothermal Survival Kit.”